A Lesson on Structural Testing with
PathCrawler-online.com*

Nikolai Kosmatov!, Nicky Williams', Bernard Botella®,
Muriel Roger!, and Omar Chebaro?

L CEA, LIST, Software Safety Laboratory, PC 174, 91191 Gif-sur-Yvette France
firstname.lastname@cea.fr
2 ASCOLA (EMN-INRIA, LINA), Ecole des Mines de Nantes, 44307 Nantes France
firstname.lastname@mines-nantes.fr

Abstract. PathCrawler is a test generation tool developed at CEA
LIST for structural testing of C programs. The new version of PathCrawler
is developed in an entirely novel form: that of a test-case generation web
service which is freely accessible at PathCrawler-online.com. This ser-
vice allows many test-case generation sessions to be run in parallel in a
completely robust and secure way. This tool demo and teaching expe-
rience paper presents PathCrawler-online.com in the form of a lesson
on structural software testing, showing its benefits, limitations and illus-
trating the usage of the tool on simple examples.

1 Introduction

Structural testing assures that the test set has thoroughly exercised the pro-
gram with respect to a given coverage criterion. PathCrawler [1,2] is a concolic
test generation tool enumerating all program paths developed at CEA LIST for
structural testing of C programs. This paper presents a new version of the tool
developed in a novel form: that of a test-case generation web service freely ac-
cessible online [3]. This form is ideal for discovering the tool, its evaluation and
teaching. We have used it in courses taught in several French universities for
groups of 30 students working in parallel.

In our opinion, the benefits of automatic structural testing remain underes-
timated in the industry. To improve the situation, structural testing tools must
be more widely taught at verification and validation courses during higher ed-
ucation. That was our motivation to write a teaching experience paper and to
demonstrate the PathCrawler tool in the form of a small lessson where the stu-
dents manipulate the tool and answer the questions. Sec. 2,3 present our experi-
ence feedback and the lesson. Sec. 4 provides some related work and concludes.

2 Teaching feedback and discussion

This lesson assumes the students have learned basic notions related to structural
testing e.g. control-flow graphs (CFQ), execution paths, branches and oracle. Our
experience shows that theoretical courses are insufficient for learning software

* This work has been partially funded by several ANR projects.

a) b)

1 int Bsearch(int *A, int x, int n){ 1 int Bsearch(int *A, int x, int n){
2 int low=0, high=n-1, mid, ret=0; 2 int low=1, high=n-1, mid, ret=0;
3 while(high > low){ 3 while(high > low){

4 mid = (low + high) / 2 ; 4 mid = (low + high) / 2 ;

5 if (x == A[mid]) 5 if(x == Al[mid])

6 ret = 1; 6 ret = 1;

7 if(x > A[mid]) 7 if(x > A[mid])

8 low = mid + 1 ; 8 low = mid + 1 ;

9 else 9 else

10 high = mid - 1; 10 high = mid - 1;

11 } 11 }

12 mid = (low + high) / 2 ; 12 mid = (low + high) / 2 ;

13 if (ret == 0 && x == A[mid]) 13 if(ret == 0 &% x == A[mid])

14 ret = 0; 14 ret = 1;

15 return ret; 15 return ret ;

16} 16 }

Fig. 1. Two erroneous versions of binary search of element x in sorted array A of size n.

testing for the majority of students. The selected questions of this lesson corre-
spond exactly to the difficult points that should be thoroughly exercised in prac-
tice. Testing with a wrong (incomplete or too strong) precondition, or without
a precondition is a very common error that may be revealed by runtime-errors
or wrong test results, but may remain completely unnoticed. Another common
difficulty is to understand the role of an oracle. Many students do not see how
to check the results of a function under test f without necessarily using the
same algorithm again. Almost all students check the return values and forget
to check that f does not modify variables when it does not supposed to do so.
An incorrect oracle may work perfectly in an exercise and remain unnoticed,
so the teacher should check the oracle of each student even if the final results
seem correct. The three final questions help the students to acquire a deeper
understanding of the subtleties of structural testing. Drawing the CFG helps
the students to visualize and analyze test generation results, especially in the
last question involving several functions.

3 The lesson

The C function Bsearch implements the well-known binary (or dichotomic) search
algorithm. Given an ordered array of integers, a, an integer value to search for, x,
and the number of elements in a, n, it should return 1 if x is an element of 4 and
0 if not. Let us investigate how PathCrawler can be used to test two different
implementations of Bsearch of Fig. 1.

3.1 Testing without a precondition (test parameters)

Question 1. We start with the first implementation shown in Fig. la and be-
have as an inexperienced tester might, by just uploading this source code into
PathCrawler-online.com via Test Your Code page and running test generation
of function Bsearch with the default test parameters. Look at the Test Session Re-
sults and explain the errors.

Answer. The Test Session Summary shows that two test-cases provoked a run-
time error. The Test-Case pages provide the input array sizes, input values and
covered path of each test-case. In one of them, with n=1s73679323, the segmentation

1
2
3
4
5
6
7
8

9
10
11
12
13
14

15

void oracle_Bsearch(int #*Pre_A, int *A,

int Pre_x, int x, int Pre_n, int n, int result_implementation){
int i, present = 0;
for(i=0;i<n;i++){
if (A[i] !'= Pre_A[il)
{ pathcrawler_verdict_failure(); return; } /* A modified */
if (Pre_A[i] == Pre_x)
present = 1;
}
if (present==0 && present != result_implementation)
{ pathcrawler_verdict_failure(); return; } /* z wrongly found in A */
else if (present==1 && present != result_implementation)
{ pathcrawler_verdict_failure(); return; } /¥ = wrongly not found in A */
else {pathcrawler_verdict_success(); return; }
}

Fig. 2. Oracle for the functions of Fig. 1.

fault occurred because although the array was empty in this test-case, the loop
body was executed (the path contains +3, i.e. the true branch at line 3 of the
source code), including an out-of-bound array access at line 5. The implemen-
tation assumes that n is no greater than the array dimension, so this must be
true for each test-case. The other test-case, with a negative value of n, provoked
a similar out-of-bound array access at line 13.

3.2 Definition of a precondition

Question 2. Restart test generation of Bsearch again, but this time customize the
test parameters so that the values of the elements of 4 and of x are restricted to
the interval 0..10, the dimension of a, denoted by dim(a), can be any value from 1
to 8 and add an unquantified precondition stating that n is equal to daim(a). Look
at the Test Session Results. Are there runtime errors? Complete the precondition
if necessary. Explain what purpose a precondition serves in testing.

Answer. This time, the generated tests do not cause execution errors. However,
we see that in these cases a is not always sorted so binary search does not
necessarily work. We add to the precondition the requirement that a is sorted in
the following quantified precondition:

for all INDEX such that INDEX <n -1, A[INDEX | <= A[INDEX + 1].

The preconditions ensure that the automatically generated test-cases will all
respect the input domain of the implemented function. This avoids test failures
due to test-cases which provoke execution errors or give the wrong result because,
even if correctly implemented, the algorithm is not supposed to work on the
inputs of such test-cases.

3.3 Role of an oracle in testing
Question 3. What purpose does the oracle fulfill in testing? What should a com-
plete oracle for Bsearch check?

Answer. The oracle examines the inputs and outputs of each test-case and de-
cides whether the implementation has given the expected outputs for the given
inputs. A complete oracle for Bsearch should check that

— the array a is not changed by the implementation,
— the implementation returns the correct result, i.e. if x is really present in a
then the implementation returns 1 and if not, it returns 0.

3.4 Using structural testing to detect a bug

Question 4. Go back to the test parameters used in Question 2 and change
the default oracle, calling pathcrawier_failure() if the outputs are as expected and
pathcrawler_success() if not. Rerun generation and check the verdicts and paths
covered by the different test-cases. How do these help locate the bug in this
implementation? Correct the bug and re-run generation with the same test pa-
rameters.

Answer. We replace the default oracle by the function of Fig. 2. The new test
session results contain 8 test-cases with verdict failure and 15 with verdict success.
Looking at the paths of the test cases, we see that the second condition on line
13 is only satisfied by the test-cases which failed (their path contains +13, +13b).
This indicates that the bug is in the single statement (line 14) which is executed
if this condition is satisfied. We replace it by ret=1; and re-run generation. All
test-cases have now verdict success.

3.5 Limits of structural testing

Question 5. With the same test parameters as in Question 4, now generate tests
for the second implementation of Bsearch in Fig. 1b. Are the same number of
cases generated as in Question 47 What are the verdicts? The bug is in line 2.
Try generation a few times to check whether the verdicts are always the same.
Explain your results.

Answer. Fewer cases are generated this time and they almost always all have
verdict success (although a run may occasionally happen to generate a test with
a failure verdict). The bug in this implementation just causes the first element
of the array not to be checked in some cases and this is why fewer tests are
generated. This example shows the limits of classical structural testing. All paths
in the code may be covered without revealing the error. This sort of error can
only be found by taking the intended functionality of the implementation into
account when generating the tests.

3.6 Testing with a specification

Question 6. Create a file with the function Bsearcn of Fig. 1b and the functions
shown in Fig. 3. Upload this new file into PathCrawler-online.com and gener-
ate tests for the function compareBsearchspec using the oracle of Fig. 4 and, otherwise,
the same test parameters as in Question 5. Explain the significance of the test-
case with a failure verdict (usually obtained before test generation is interrupted
because of the limit on the number of partial paths in this evaluation version).

Answer. The function spec_Bsearch provides a specification similar to the oracle of
Flg 2, while CompareBsearchSpec calls Bsearch and spec_Bsearch to compare the result
with the specification. There are therefore execution paths in compareBearchSpec in

/% copy the function Bsearch above */
int spec_Bsearch(int *Pre_A, int *A,
int Pre_x, int x, int Pre_n, int n, int result_implementation){

int i, present = 0;
for(i=0;i<n;i++){
if (A[i] !'= Pre_A[il)
return 0; /* A modified */
if (Pre_A[i] == Pre_x)
present = 1;
}
if (present==0 && present != result_implementation)
return 0; /* z wrongly found in A */
else if(present==1 && present != result_implementation)

return 0; /* x wrongly not found in A */
else return 1;

}

int CompareBsearchSpec(int *A, int x, int n){
int *Pre_A = (int *)malloc(n * sizeof (int));
int i;
for (i = 0; i < nj; i++)

Pre_A[il]l = A[il;
int ret=Bsearch(A,x,n);
return spec_Bsearch(Pre_A, A, x, x, n, n, ret);

}
Fig. 3. Specification for Bsearch and function CompareBsearchSpec to be tested in Qu. 6

void oracle_CompareBsearchSpec(int *Pre_A, int *A,
int Pre_x, int x, int Pre_n, int n, int result_compare){
if (result_compare)
{ pathcrawler_verdict_success(); return; }
else
{ pathcrawler_verdict_failure(); return; }

Fig. 4. Oracle for function CompareBsearchSpec of Fig. 3

which the result returned by the implementation is not accepted by spec_Bsearch.
In trying to generate tests to cover these paths, PathCrawler is searching for
inputs which cause the implementation of Bsearch to give an unexpected result.
In the test-case with the failure verdict, x is the first element of a and this case
reveals the bug that was not detected by structural testing of the implementation
of Bsearch alone.

4 Related work and conclusion

The PathCrawler method is related to other test generation tools combining sym-
bolic and concrete execution of the program under test, for example, DART [4],
CUTE [5], EXE [6], PEX [7], YOGI [8]. Although the idea to make tools avail-
able online for evaluation and use is very attractive, most tools are available only
for download and require installation on the user’s platform.

In the domain of software verification, few research teams provide an online
(evaluation) version for their tool to allow (potential) users to quickly run it and
to familiarize themselves with its concepts. The AgitarOne tool [9] (for unit test-
ing of Java) and Euclide [10] (for property verification or proving reachability in
C code) did have online versions allowing to try the tools. PEX for Fun [11] gives
access to a limited version of the PEX [7] test generation tool in a recreational

way, inviting the user to try to solve little puzzles. The online version of the
Interproc static analyzer [12] illustrates static analysis for programs in a small
imperative programming language accepted by the tool. In constraint program-
ming, WebCHR [13] provides a service for solving CHR (Constraint Handling
Rules) constraints online. No other software verification tool provides a testing
web service for C software similar to PathCrawler-online.com.

Automatic structural test generators may also be used for other purposes, for
example, to find execution errors [4-6], to verify conformity to specifications [7,
8,14] or to verify non-functional properties [15]. The PathCrawler method can
be efficiently combined with static analysis techniques, for example, for program
debugging [16,17]. We are currently studying uses of PathCrawler which go
beyond traditional structural test-case generation, as illustrated by Question 6
above, and its novel combinations with static analysis and proof tools.

In this paper, we demonstrated PathCrawler-online.com, the new online
version of the PathCrawler test generation tool, and illustrated by a small prac-
tical session how it can be used for teaching. We hope that this work will be
helpful in teaching software testing at university level and will contribute to the
introduction of automatic structural testing techniques in industry.

References

1. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: automatic generation
of path tests by combining static and dynamic analysis. In: EDCC’05
2. Botella, B., Delahaye, M., Hong-Tuan-Ha, S., Kosmatov, N., Mouy, P., Roger,
M., Williams, N.: Automating structural testing of C programs: Experience with
PathCrawler. In: AST’09
3. Kosmatov, N.: PathCrawler online (2010-2012) http://pathcrawler-online.com/.
4. Godefroid, P., Klarlund, N.; Sen, K.: DART: Directed automated random testing.
In: PLDI'05
5. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
ESEC/FSE’05
6. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: CCS’06
7. Tillmann, N., de Halleux, J.: White box test generation for .NET. In: TAP’08
8. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
ISSTA’08
9. AgitarOne Test Generator: (2012) http://www.agitar.com/.
10. Gotlieb, A.: Euclide: a constraint-based testing platform for critical C programs.
In: ICST’09. http://euclide.gforge.inria.fr/.
11. Pex for fun: Online evaluation version of PEX (2011) http://pexforfun.com/.
12. Interproc online: (2012) http://pop-art.inrialpes.fr/interproc/interprocweb.cgi.
13. WebCHR online: (2012) http://dtai.cs.kuleuven.be/CHR /webchr.shtml.
14. Collavizza, H., Rueher, M.: Exploration of the capabilities of constraint program-
ming for software verification. In: TACAS’06
15. Williams, N.: WCET measurement using modified path testing. In: WCET’05
16. Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: The SANTE tool: Value
analysis, program slicing and test generation for C program debugging. In: TAP’11
17. Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Program slicing enhances
a verification technique combining static and dynamic analysis. In: SAC’12

