
Self-TUNe-ing of a J2EE clustered application

O. Chebaro L. Broto J.-P. Bahsoun D. Hagimont

Toulouse University
IRIT Laboratory

118 Route de Narbonne
F-31062 TOULOUSE CEDEX 9

Daniel.Hagimont@enseeiht.fr

Abstract

The Java 2 Platform, Enterprise Edition (J2EE) defines
a model for developing multi-tier distributed applications,
such as e-commerce applications. Such applications are
typically composed of a web server, a servlet server, option-
ally an EJB server and a database server. Clusters allow
replication of each tier instance, thus providing an appro-
priate infrastructure for high availability and scalability.

However, such applications are complex to administrate
and often lack deployment and reconfiguration tools. More-
over, the fact that management tasks are performed by hu-
mans leads to many configuration errors and low reactivity.

To address this issue, we designed and implemented an
autonomic management system which provides an environ-
ment for deploying and autonomously reconfiguring dis-
tributed applications as required. The main principle is
to wrap legacy software pieces in components in order to
administrate a software infrastructure as a component ar-
chitecture. Several languages (textual, graphical) are intro-
duced to describe deployment and reconfiguration policies.

This paper presents an overview of the TUNe autonomic
management system and focuses on its application to the
management of a clustered J2EE application.

1. Introduction

J2EE architectures are as a convenient way to build ef-
ficient ecommerce web applications. To address availabil-
ity and scalability issues, this multi-tiers model can benefit
from clustering techniques that allow, by means of replica-
tion and consistency mechanisms, to tolerate failures and
increase application capacities.

However, J2EE applications (the whole infrastructure in-
cluding the middleware runtimes) are not easy to manage.
Their deployment process (installation and configuration) is
as complex as tricky, no execution monitoring mechanism

really exists and dynamic reconfiguration remains a goal to
achieve. This lack of manageability makes it very difficult
to take full advantage of clustering capabilities, i.e. expand-
ing/collapsing replicas sets as needed, and so on

A very promising approach to this issue is to implement
administration as an autonomic software. Such software can
be used to deploy and configure applications in a distributed
environment. It can also monitor the environment and react
to events such as failures or overloads and reconfigure ap-
plications accordingly and autonomously.

This paper reports on an ongoing project that aims at
providing system administrators with a management en-
vironment that is as automated as possible. This man-
agement system called TUNe (Toulouse University Net-
work) targets a wide range of applications, especially ex-
isting (legacy) applications. In this paper, we report on
our experience in using TUNe for the deployment (installa-
tion/configuration) and reconfiguration of a clustered J2EE
application. We show how TUNe allows deploying an in-
frastructure of servers such as Apache, Tomcat and Mysql,
and a real benchmark application called RUBIS.

The rest of this paper is structured as follows. Section 2
overviews clustered J2EE applications and their life cycle
and presents the issues related to deployment, configuration
and more generally management. Then, Section 3 presents
TUNe, a contribution to ease such applications management
by providing automatic deployment and configuration tools.
Section 4 presents our experiments with J2EE and an ex-
perimental evaluation. After a review of related works in
Section 5, Section 6 concludes and presents future work.

2. Administration of J2EE clusters

This introductory section overviews clustered J2EE ap-
plications and their life cycle before presenting the associ-
ated management issues.

2.1. Clustered J2EE Applications and their
Lifecycle

J2EE applications [9] are usually composed of four dif-
ferent tiers, either running on a single machine or on up to
four ones:

• A web server (e.g. Apache [13]), that manages in-
coming client requests and, depending if those relate to
static or dynamic content, serves them or routes them
to the presentation tier (the servlet container) using an
appropriate protocol (e.g. AJP13 for Tomcat).

• A servlet container (e.g. Tomcat [12]), that receives
forwarded requests from the web tier, interacts with the
EJB container for invoking business code and fetching
results, and generates a web document presenting the
results to the end-user.

database storing application data by sending SQL re-
quests by the way of the JDBC framework and dynam-
ically

• An EJB container (e.g. Jonas [14]), that hosts En-
terprise Java Beans which include the business code
of the application. The invoked EJBs may have to be
loaded/stored from the database by sending SQL re-
quests through JDBC.

• A database management system (e.g. MySQL
server [10]), that manages the application’s persistent
data.

The main motivations for clustering are scalability and
fault tolerance. Scalability is a key issue in case of web
applications that must serve billion requests a day. Fault-
tolerance does not necessarily apply to all sites, but to ap-
plications where information delivery is critical (as com-
mercial web sites for example). Both scalability and fault-
tolerance are offered through replication (and consistency
management). In the case of J2EE applications, replication
at the level of each tier provides applications with service
availability when machine failures occur, as well as effi-
ciency by load balancing incoming requests between repli-
cas.

The architecture of clustered J2EE applications is de-
picted in Figure 1 and detailed below in the case of an
Apache, Tomcat and MySQL clusters. Apache clustering
is managed through HTTP load balancing mechanisms that
can involve hardware and/or software balancers.

Tomcat clustering is made by using the load balancing
feature of Apache’s mod jk plugin. Each mod jk can be
configured in order to balance requests on all or on a subset
of Tomcat instances, according to a weighted round-robin
policy.

Figure 1. Architecture of dynamic web appli-
cations

Database clustering solutions often remain commercial,
like Oracle RAC (Real Application Cluster) or DB2 cluster
and require using a set of homogeneous full replicas. We
can however cite C-JDBC [4], an open source JDBC clus-
tering middleware that allows using heterogeneous partial
replicas providing with consistency, caching and load bal-
ancing.

J2EE applications life cycle consists in three main steps
as illustrated in Figure 2. These steps are detailed below:
deployment, monitoring and reconfiguration.

Figure 2. J2EE Applications Life Cycle

• Deployment. At the deployment step, tiers must firstly
be installed on hosts and be configured to be correctly
bound to each other. Then, application logic and data
can be initialized. Application tiers are often delivered
through installable packages (e.g. RPMs) and the con-
figuration is statically expressed in configuration files
which map components to resources.

• Monitoring. Once the application has been deployed
on the J2EE cluster, one needs to know both the sys-
tem and the application states to be aware of problems
that may arise. Most common issues are due either to
hardware faults such as a node or network link failure,
or inappropriate resource usage when a node or a tier
of the application server becomes a bottleneck.

• Reconfiguration. Once a decision has been taken
(e.g., extension of a J2EE tier on new nodes to handle
increased load), one must be able to perform appropri-
ate reconfiguration, dynamically and avoiding as far as
possible to stop the application.

2.2. Challenges

Currently, no integrated deployment environment exists
for clustered J2EE applications. Each tier must be installed
manually and independently. The whole assembly, includ-
ing clustering middleware, must be configured manually
mainly through static configuration files (and also there isnt
any configuration consistency verification). Consequently,
the deployment and configuration process is a complex task
to perform.

J2EE cluster monitoring is also a weakly covered aspect.
It is obviously possible to see hosts load or to track failures
using SNMP, but this is not enough to get accurate informa-
tion about application components.

In terms of reconfiguration, no dynamic mechanism is
really offered. Only the Apache server enables to dynam-
ically take into account configuration file changes, others
tiers need to be stopped and restarted in order to apply mod-
ifications.

In this context, in order to alleviate the burden of applica-
tion administrator, to take advantage of clustering and thus
to be able to optimize performance and resource consump-
tion, there is a crucial need for a set of tools:

• an automated deployment and configuration tool, that
allows to easily and user-friendly deploy and configure
an entire clustered J2EE application,

• an efficient application monitoring service that auto-
matically gathers, filters, and notifies events that are
pertinent to the administrator,

• a framework for dynamic reconfiguration.

These challenges are addressed by TUNe as described in
the next section.

3. TUNE

Since TUNe addresses the management of very hetero-
geneous software, our key design choice was to rely on a
component model to provide a uniform management inter-
face for any managed resource. Therefore, each legacy soft-
ware is wrapped in a component which interfaces its ad-
ministration procedures. We refer to the approach as the
component-based management approach.

3.1. Component-Based Management

Component-based management aims at providing a uni-
form view of a software environment composed of different
types of servers. Each managed server is encapsulated in a
component and the software environment is abstracted as a
component architecture. Therefore, deploying, configuring
and reconfiguring the software environment is achieved by
using the tools associated with the used component-based
middleware.

The component model we use in TUNe is Fractal [3], a
reflective component model intended for the construction of
dynamically configurable and monitored systems. A Frac-
tal component is a run-time entity that is encapsulated and
communicates with its environment through well-defined
access points called interfaces. Fractal components com-
municate through explicit bindings. A binding corresponds
to a communication path between two or more components.
These binded components can form a component architec-
ture. The Fractal specification specifies several useful con-
trollers: the binding controller allows creating or removing
bindings between components; the life-cycle controller al-
lows starting and stopping the component; the attribute con-
troller allows setting and getting configuration attributes.
Finally, Fractal provides a rich set of control interfaces for
introspecting (observing) and reconfiguring a deployed ar-
chitecture.

In Fractal, the architecture of an application is described
using an Architecture Description Language (ADL). This
description is an XML document which details the architec-
tural structure of the application to deploy, e.g. which soft-
ware resources compose the application, how many servers
and/or replicas are created, how are the servers bound to-
gether, etc ...

However, we observed that directly relying on a com-
ponent model for system administration has several draw-
backs:

• wrapping components are difficult to implement. I re-
quires to have a good understanding of the used com-
ponent model (Fractal),

• deployment is not very easy. ADLs are generally very
verbose and still require a good understanding of the
underlying component model. Moreover, if we con-
sider large scale software infrastructure such as those
deployed over a grid (another application domain ad-
dressed by TUNe), deploying a thousand of servers re-
quires an ADL deployment description file of several
thousands of lines,

• autonomic managers (reconfiguration policies) are dif-
ficult to implement as they have to be programmed
using the control interfaces of the component model.

This also required a strong expertise regarding the used
component model.

This led us to the conclusion that a higher level interface
was required for describing the encapsulation of software
in components, the deployment of a software environment
potentially in large scale and the reconfiguration policies to
be applied autonomically. We present our proposal in the
next section.

3.2. TUNes Management Interface

As previously mentioned, our main target is to make ad-
ministrators life easier. So we want to provide a high level
interface for the description of the application to wrap, de-
ploy and reconfigure by hiding the details of the compo-
nent model we rely on and providing a more intuitive policy
specification interface for wrapping, deployment and recon-
figuration. This led us to the following design choices:

• Regarding wrapping, our approach is to introduce
a Wrapping Description Language which is used to
specify the behavior of wrappers. A WDL specifica-
tion is interpreted by a generic wrapper Fractal compo-
nent, the specification and the interpreter implement-
ing an equivalent wrapper. Therefore, an administrator
doesn’t have to program any implementation of Fractal
component.

• Regarding deployment, our approach is to introduce
a UML profile for graphically describing deployment
schemas. First, a UML based graphical description of
such a schema is much more intuitive than an ADL
specification, as it doesnt require expertise of the un-
derlying component model. Second, the introduced
deployment schema is more abstract than the previ-
ous ADL specification, as it describes the general or-
ganization of the deployment (types of software to de-
ploy, interconnection pattern) in intension, instead of
describing in extension all the software instances that
have to be deployed.

• Regarding reconfiguration, our approach is to intro-
duce a UML profile for the description of state dia-
grams. These state diagrams are used to define work-
flows of operations that have to be performed for re-
configuring the managed environment. One of the
main advantages of this approach, besides simplic-
ity, is that state diagrams manipulate the entities de-
scribed in the deployment schema and reconfigurations
can only produce an (concrete) architecture which con-
forms to the abstract schema, thus enforcing reconfig-
uration correctness.

These three aspects are detailed in the next section
through our experiments with J2EE.

4. Using TUNe for J2EE

The autonomic management policies considered in this
paper are self-optimization and self-repair.

4.1. Deployment

The UML profile we introduce for specifying deploy-
ment schemas is illustrated in Figure 3 where a deployment
schema is defined for a J2EE cluster. A deployment schema
describes the overall organization of a software infrastruc-
ture to be deployed. At deployment time, the schema is
interpreted to deploy component architecture. Each ele-
ment (the boxes) corresponds to a software which can be
instantiated in several component replicas. A link between
two elements generates bindings between the components
instantiated from these elements. Each binding between
two components is bi-directional (actually implemented by
2 bindings in opposite directions), which allows navigation
in the component architecture. An element includes a set
of configuration attributes for the software. Most of these
attributes are specific to the software, but few attributes are
predefined by TUNe and used for deployment:

• wrapper is an attribute which gives the name of the
WDL description of the wrapper,

• legacyFile is an attribute which gives the archive
which contains the legacy software binaries and con-
figuration files,

• hostFamily is an attribute which gives a hint regarding
the dynamic allocation of the nodes where the software
should be deployed,

• initial is an attribute which gives the number of in-
stances which should be deployed. The default value
is 1.

The schema Figure 3 (left side) describes a J2EE clus-
ter containing one Apache, two Tomcats, one C-JDBC and
two Mysql that should be deployed. A probe is linked with
Tomcat, which monitors the server in order to trigger a re-
pair / reconfigure procedure. In this schema, the initial at-
tribute of each element gives the number of replicas to be
initially instantiated. A cardinality is associated with each
link, which gives the minimal and maximal number of bind-
ing between elements. The cardinality is taken into account,
both at deployment and reconfiguration time.

In Figure 3 (right side) we see the component archi-
tecture actually instanciated from this schema. The lines
represent relationships (or bindings) between components.
Apache (web server) balances the requests between two
replicated tomcats (servlet engines). The Tomcat servers

Figure 3. Deployment Schema and Manage-
ment Layer for J2EE Cluster

are both connected to the C-JDBC database clustering mid-
dleware. This latter is connected to two MySQL database
servers.

4.2. A Wrapping Description Language

Upon deployment, the above schema is parsed and for
each element, a number of Fractal components are created.
These Fractal components implement the wrappers for the
deployed software, which provide control over the software.
Each wrapper Fractal component is an instance of a generic
wrapper which is actually an interpreter of a WDL specifi-
cation.

A WDL description defines a set of methods that can be
invoked to configure or reconfigure the wrapped software.
The workflow of methods that have to be invoked in order to
configure and reconfigure the overall software environment
is defined thanks to an interface introduced in Section 4.3.

Generally, a WDL specification provides start and stop
operations for controlling the activity of the software, and
a configure operation to reflect the values of the attributes
(defined in the UML deployment schema) in the configu-
ration files of the software. Notice that the values of these
attributes can be modified dynamically. Other operations
can be defined according to the specific management re-
quirements of the wrapped software, these methods being

implemented in Java.
The main motivations for the introduction of WDL are:

• to hide the complexity of the underlying component
model (Fractal), as the administrator doesn’t have to
immplement wrappers as Fractal components.

• that most of the needs should be met with a finite set
of generic methods that can be therefore reused.

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<wrapper name=’apache’>
<method name="start"

key="wrapper.util.GenericStart"
method="start_with_pid_linux" >

<param value="$dirLocal/apache/bin/apachectl start"/>
<param value="LD_LIBRARY_PATH=$dirLocal"/>

</method>

<method name="configure"
key="wrapper.util.ConfigurePlainText"
method="configure">

<param value="$dirLocal/apache/conf/httpd.conf" />
<param value=" "/>
<param value="User:$User" />
<param value="Group:$Group" />
<param value="Listen:$Listen" />
<param value="ServerName:$ServerName" />
<param value="ServerRoot:$dirLocal/$ServerRoot" />
</method>

<method name="addWorkers"
key="wrapper.extension.AddTomcatWorker"

method="addWorkers">
<param value="$dirLocal/apache/conf/workers.prop" />

<param value="name:$tomcat.compName"/>
<param value="type:ajp13" />
<param value="host:$tomcat.nodeName" />
<param value="port:$tomcat.ajpPort" />
<param value="lbFactor:$tomcat.lbfactor" />
</method>

<method name="stop"
key="wrapper.util.GenericStop"
method="stop_with_pid_linux" >

<param value="$dirLocal/apache/bin/apachectl stop"/>
<param value="LD_LIBRARY_PATH=$dirLocal"/>

</method>
</wrapper>

Figure 4. Apache WDL specification

Figure 4 shows an example of WDL specification which
wraps an Apache server. It defines start and stop methods
which can be invoked to launch/stop the deployed Apache
server, and a configure method which reflects configuration
attributes in the configuration file of the Apache server, and
an addWorkers method that adds the list of Tomcats to the
Apache workers file (which configures the load-balancer).
Most of the Java implementations of these methods are
generic and have been used in the wrappers of most of
the software we wrapped (currently we have 2 implementa-
tions of configuration methods: one for XML configuration
files like Tomcat configuration file, and another for plain
text files like Apache configuration file). A method defini-
tion includes the description of the parameters that should

be passed when the method is invoked. These parameters
may be String constants, attribute values or combination
of both (String expressions). All the attributes defined in
the deployment schema can be used to pass the configured
attributes as parameters of the method invocations. How-
ever, several additional attributes are automatically added
and managed by Tune:

• dirLocal is the directory where the software is actually
deployed on the target machine,

• compName is a unique name associated with the de-
ployed component instance,

In Figure 4, the start method takes as parameters the shell
command that launch the server, and the environment vari-
ables that should be set:

• $dirLocal/apache/bin/apachectl is the name of the bi-
nary to be executed for starting or stopping the Apache
server,

• LD LIBRARY PATH=$dirLocal is an envionment
variable to pass to the binary.

The configure method is implemented by the Configure-
PlainText Java class. This configuration method generates a
configuration file composed of <attribute,value> pairs:

• $dirLocal/apache/conf/httpd.conf is the name of the
configuration file to generate,

• ” ” is the separator between each attribute and value,

• and the attributes and value are separated by a ”:” char-
acter.

It is sometimes necessary to navigate in the deployed
component architecture to access key attributes of the com-
ponents in order to configure the software. For instance,
the configuration of an apache server requires knowing the
name and location of the Tomcat servers it is bound to.
Therefore, in the Apache wrapper (Figure 4), we need to
access Tomcats parameters in order to get their hosts and
ports variables. Since in the deployment schema there is
a link between the Apache and Tomcat elements, there are
bindings between the Apache and the Tomcats at the com-
ponent level. These bindings allow navigating in the man-
agement layer. In the example in the addWorkers method,
$tomcat.nodeName returns the list of names of the nodes
where Tomcat servers are deployed.

4.3. A UML profile for (re)configuration
procedures

Reconfigurations are triggered by events. An event
can be generated by a specific monitoring component (e.g.

probes in the deployment schema) or by a wrapped legacy
software which already includes its own monitoring func-
tions.

Whenever a wrapper component is instantiated, a com-
munication pipe is created (typically a UNIX pipe) that
can be used by the wrapped legacy software to generate
an event, following a specified syntax which allows for pa-
rameter passing. Notice that the use of pipes allows any
software (implemented in any language environment such
as Java or C++) to generate events. An event generated in
the pipe associated with the wrapper is transmitted to the
administration node where it can trigger the execution of
reconfiguration programs (in our current prototype, the ad-
ministration code, which initiates deployment and reconfig-
uration, is executed on one administration node, while the
administrated software is managed on distributed hosts). An
event is defined as an event type, the name of the component
which generated the event and eventually an argument (all
of type String).

For the definition of reactions to events, we introduced
a UML profile which allows specifying reconfiguration as
state diagrams. Such a state diagram defines the workflow
of operations that must be applied in reaction to an event.

An operation in a state diagram can assign an attribute
or a set of attributes of components, or invokes a method
or a set of methods of components. To designate the com-
ponents on which the operations should be performed, the
syntax of the operations in the state diagrams allows navi-
gation in the component architecture, similarly to the wrap-
ping language.

Figure 5. State diagrams for repair

For example, let’s consider the diagram in Figure 5
which is the reaction to a Tomcat failure. The event fix-
Tomcat is generated by a probeTomcat component instance;
therefore the variable this is the name of this probeTomcat
component instance. Then:

• this.stop will invoke the stop method on the prob-
ing component (to prevent the generation of multiple
events),

• this.tomcat.start will invoke the start method on the
Tomcat component instance which is linked with the
probe. This is the actual repair of the faulting Tomcat
server,

• this.start will restart the probe associated with the
Tomcat.

Notice that state diagram’s operations are expressed us-
ing the elements defined in the deployment schema, and are
applied on the actually deployed component architecture.

Figure 6. State diagrams for start

A similar diagram is used to start the deployed J2EE
cluster, as illustrated in Figure 6. In this diagram, when an
expression starts with the name of an element in the deploy-
ment schema (apache or tomcat ...), the semantic is to con-
sider all the instances of the element, which may result in
multiple method invocations. The starting diagram ensures
that (1) configuration files must be generated, and then (2)
the servers must be started following the order.

Similar diagrams can be drawn to define the actions or
methods that should be invoked while upsizing or downsiz-
ing a component in reaction to events of load peak.

4.4. Experimental evaluation

We evaluated our prototype in a J2EE cluster running
RUBiS [1], a standard benchmark modeled according to
an online auction service such as eBay. RUBiS provides
a load injector to emulate clients. Experiments ran in the
Grid 5000 [6] environment (a national grid infrastructure).

The J2EE cluster described in the previous section has
been implemented and TUNe was used to deploy and ad-
ministrate it. The evaluations reported in this paper focus on
self-optimization for and self-repair for the web container
tier (Tomcat).

4.4.1 Self-Repair

In this experiment, we used TUNe to deploy a J2EE ar-
chitecture composed of one Apache, two Tomcats, one C-
JDBC and two MySQLs. The main objective of this experi-
ment is to demonstrate the effectiveness of automatic repair
in the case of server failure. Consequently, we artificially
induced the crash of a Tomcat server in the managed sys-
tem and we observed the load distribution (the CPU usage)
on the different servers.

Figure 7. Self-Repair with TUNe

Figure 7 shows the observed behavior. During the in-
terval between the crash and the repair, the CPU usage of
Tomcat1 increases rapidly since the workload is sent to the
single remaining server, but only for a short time inter-
val(about 2 seconds), as TUNe detects the failure and re-
pairs it. Rapidly, the two Tomcats stabilize at the same CPU
usage level as before the crash.

4.4.2 Self-Optimization

In this experiment, we illustrate the dynamic allocation and
deallocation of nodes to tackle performance issues related
to a changing workload: at the beginning of the experi-
ment, the managed system is submitted a medium workload
then the load increases progressively until the CPU usages
reaches the limit configured in the probe (40%).

Figure 8. UpSize with TUNe

Figure 8 shows the observed behavior. After reaching
the 40% of average CPU load, a new Tomcat is deployed on

a new node to handle the load increase. Subsequently the
average CPU load decreases as the load is balanced on both
Tomcats which stabilize at the same CPU usage level.

Figure 9. DownSize with TUNe

Then we decrease progressively the submitted workload
until the average CPU load decreases below the limit con-
figured for the downsize in the probe (20%).

Figure 9 shows the observed behavior. After decreasing
below 20% of average CPU load, one of the two deployed
Tomcats is undeployed and the other serves all the traffic.

5. Related Work

Autonomic computing is an appealing approach that
aims at simplifying the hard task of system management,
thus building self-healing, self-tuning, and self-configuring
systems [8]. Management solutions for legacy systems are
usually proposed as ad-hoc solutions that are tied to particu-
lar legacy system implementations (e.g. [15] for self-tuning
cluster environments). This unfortunately reduces reusabil-
ity and requires autonomic management procedures to be
reimplemented each time a legacy system is taken into ac-
count in a particular context. Moreover, the architecture of
managed systems is often very complex (e.g. multi-tier ar-
chitectures), which requires advanced support for its man-
agement. Relying on a component model for managing
legacy software infrastructure has been proposed by several
projects [2], [5], [7], [11] and has proved to be a very con-
venient approach, but in most of the cases, the autonomic
policies have to be programmed using the programming in-
terface of the underlying component model (a framework
for implementing wrappers, configuration APIs or deploy-
ment ADLs) which is too low level and still error prone.

In this paper, we proposed a high level interface which
is composed of a language/framework for the description of
wrappers:

• a UML profile for specifying deployment schemas,

• a UML profile for specifying reconfigurations as state
transition charts.

We demonstrated the benefits of using TUNe for the au-
tonomic administration of a clustered J2EE application.

6. Conclusions

As the popularity of dynamic-content Web sites in-
creases rapidly, there is a need for maintainable, reliable
and above all scalable platforms to host these sites. Clus-
tered J2EE servers is a common solution used to provided
reliability and performances. J2EE clusters may consist of
several thousands of nodes, they are large and complex dis-
tributed system and they are challenging to administer and
to deploy. Hence is a crucial need for tools that ease the
administration and the deployment of these distributed sys-
tems. Our ultimate goal is to simplify the hard task of
system management. In this paper, we propose a higher
level interface for describing the encapsulation of software
in components, the deployment of a software environment
and the reconfiguration policies to be applied autonomi-
cally. This management interface is mainly based on UML
profiles for the description of deployment schemas and the
description of reconfiguration state diagrams. A tool for the
description of wrapper is also introduced to hide the details
of the underlying component model.

References

[1] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety,
R. Gil, J. Marguerite, K. Rajamani, and W. Zwaenepoel.
Specification and Implementation of Dynamic Web Site
Benchmarks. In IEEE 5th Annual Workshop on Workload
Characterization, Austin, TX, 2002.

[2] G. Blair, G. Coulson, L. Blair, H. Duran-Limon, P. Grace,
R. Moreira, and N. Parlavantzas. Reflection, self-awareness
and sef-healing in openorb. In 1st Workshop on Self-Healing
Systems, WOSS 2002, 2002.

[3] E. Bruneton, T. Coupaye, and J. B. Stefani. Recursive and
Dynamic Software Composition with Sharing. In Inter-
national Workshop on Component-Oriented Programming,
Malaga, Spain, June 2002. http://fractal.objectweb.org.

[4] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC:
Flexible Database Clustering Middleware. In USENIX An-
nual Technical Conference, Freenix track, Boston, MA,
2004.
http://c-jdbc.objectweb.org/.

[5] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based self adaptation
with reusable infrastructure. In IEEE Computer, 37(10),
2004.

[6] Grid 5000. Grid 5000 Web Site.
https://www.grid5000.fr.

[7] D. Hagimont, S. Bouchenak, N. D. Palma, and C. Taton.
Autonomic management of clustered applications. In IEEE
International Conference on Cluster Computing, 2006.

[8] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. In IEEE Computer Magazine, 36(1), 2003.

[9] S. Microsystems. Java 2 platform enterprise edition (j2ee).
[10] MySQL. MySQL Web Site.

http://www.mysql.com/.
[11] P. Oriezy, M. Gorlick, R. Taylor, G. Johnson, N. Med-

vidovic, A. Quilici, D. Rosenblum, and A.Wolf. An
architecture-based approach to self-adaptive software. In
IEEE Intelligent Systems 14(3), 1999.

[12] The Apache Software Foundation. Apache Tomcat.
http://tomcat.apache.org/.

[13] The Apache Software Foundation. HTTP server project.
http://httpd.apache.org/.

[14] The ObjectWeb Consortium. Jonas Java Open Application
Server.
http://jonas.objectweb.org.

[15] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dy-
namic Provisiong of Multi-Tier Internet Applications. In
2nd International Conference on Autonomic Computing,
Seattle, WA, 2005.

